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Abstract

Cell Modeling is one of the emerging and challenging areas in our endeavor to model

biological processes and indeed entire organisms, areas that are currently being in-

tegrated under the banner of Systems Biology. Given that modeling of biological

systems is a highly complex task, it is important to start with relatively simpler

definitions of A ’system’. A biological cell is a natural fairly self-contained unit, de-

picting the fundamental unit of living tissue. This project focuses on creating simple

models of cells and exploring work in cellular dynamics. While a number of studies

have illustrated the design, development and application of metabolic and structural

models of the individual proteins and also the proteome, there has not been much

work reported in the literature about modeling cell morphologies, analyzing the dy-

namics of cellular phenomenon focusing on the morphological variations of cellular

entities and ultimately relate them to molecular level knowledge. Recent work in the

lab,methods that systematically captures data about various morphological features

in a cell available through a number of sophisticated cell imaging techniques. The

work reported here is an improvement over the previous work in terms of feature

extraction from cellular images. An algorithm for efficiently classifying and utilizing

this information through the use of machine learning has been developed, learning

from successes in the well-established support vector machine. The existing algorithm

uses segmentation where as presently developed algorithm uses edge detection tech-

niques.It is semi-automated method. The preliminary models have been developed

by generating three-dimensional coordinates; finally a simulation of cellular dynamics

has been discussed.
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Chapter 1

Introduction

It is becoming increasingly clear that in silico modeling of biological systems is a

far more complex endeavor than previously imagined [42, 18, 28, 37, 25, 26] mainly

because the complexity of biological systems is not amenable to easy, simplistic so-

lutions. In this respect, the biological cell is a natural self-contained unit, of prime

importance. The fundamental unit of living tissue, in fact of life itself, is the bi-

ological cell. Currently there is enormous interest in in silico modeling of the cell

in its many aspects. The cell is, of course, an enormously complex machine which

can be understood at many levels, functional, signaling, metabolic, and regulatory

and so on. However, there is a growing recognition that understanding its structure

and the physical nature of intracellular objects, as well as their three dimensional

spatial relationships, can yield significant insights into physiology and functionality

[36, 25]. Complex network of interacting bimolecules are responsible for the complex-

ity of cellular phenomenon (metabolic, biochemical, chemical etc.). The dynamics of

cell is mainly comprised of biomolecules present at different levels of hierarchy. The

(Fig.(1.1)) shows the different levels of hierarchy required to define the complexity of

cell.

Although cell modeling in its various aspects is a subject of intense study currently

across the globe [42, 28, 37, 36, 2], several questions remain open, warranting further

work in this area. One main lacuna is the lack of integrated models that span across

cell morphologies to organelle structure, function and dynamics relating ultimately to

gene or protein level knowledge. Here we seek to address this issue and have worked

towards a framework for such integration, with an emphasis on the cell morphological

structures to start with.

1
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Figure 1.1: Different levels of hierarchy required for modeling the cellular dynamics
of cell. The different levels comprises, signaling, behavioral, physical, chemical, di-
visional mechanisms. The behavior of this complex network depends on genetic and
biological parameters (rate constant, equilibrium constant, gene dosage etc.).

Systems biology of red blood cell is complex and interests researchers worldwide.

An effort done by Kakniashvili et al. was successful in defining the human red cell

proteome [4], similarly the research done by other group indicates that current red

blood cell in-silico model includes [8] 36 dynamic, independent variables. The intri-

cacy of erythrocyte has still major issues in order to achieve the complete model.

There is still some phenomenon left, in order to extend the existing model. The

most important one is deformation of shape of membrane. The main cause of this

process is well-known and major area of research. In every red blood cell there are

280 million molecules of hemoglobin. Hemoglobin protein is a long twisted strand

of amino acids, having heme disk whose iron in the center attracts, carries and re-

leases oxygen. The structure has been crystallized and its double strand has been

described in [13, 12]. Hemoglobin molecule contains four protein chains or globins,

among which two strands are ”alpha” chains and two are ”beta” strands. The four

strands assemble together in a way, like a glove, in order to carry oxygen. Sickled

cell hemoglobin (Hbs) is mutated and polymerized into long, stiff, rod-like fiber [7].

The genetic mutation in hemoglobin A (HbA) give rise to HbS due to replacement

of charged Glu with hydrophobic Val in sixth position of each - chain. The con-

sequences of this mutation results in lose of oxygen by HbS and formation of rigid

14-stranded polymers. This changes the shape of the protein: a small protrusion (or

dent) appears on the surface of the proteins. This bump fits exactly into the existing

”pocket” on the surface of the next protein. The two proteins ”clump” together, then

the third clumps. This creates a kind of domino effect, leading to the formation of
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long fibers made of many millions of damaged hemoglobin molecules. This seems

to happen when the hemoglobin does not have its oxygen. The polymerization of

sickle hemoglobin proceeds by two types of nucleation: homogenous as well as het-

erogeneous. The reaction is enhanced by nucleus formation, which is not any special

structure rather a piece of polymer. Therefore, the surface of this polymer can act as

stimulation for heterogeneous nucleation. This phenomenon of double nucleation was

proposed in 1980 [9], and experimentally observed in 1990 [38]. The model explaining

this phenomenon was proposed by Mirchev and Ferrone [32], according to this model

same partners are responsible for formation of double strand, i.e., the 6 Val donor

and corresponding acceptor regions are critical elements for heterogeneous nucleation.

In this way the hemoglobin loses its solubility and clumps into bundles. The long

bundled hemoglobins twist in a regular fashion. These bundles self associate into

even larger structures, the formation of this stiff, rod like fiber is mainly responsible

for deformation, stretching and distortion the cell into a sickle shape. In fig.(1.2)

two depictions of the double strand of hemoglobin molecules found in the crystal are

shown. On the left, the strand is shown as a transparent molecular surface, with heme

groups colored red, and the mutant valine residues blue. In the representation on the

right, the protein backbones are shown as white coils, with the color scheme for heme

groups and mutant valine residues remaining the same as the left. The axial contacts

are located between molecules within a single strand in the vertical direction. Lateral

contacts involving the blue valine residues act to associate the two single strands into

the double strand.

This project focuses on the challenges existing in modeling and integrating the

information present in literature. The cellular dynamics provide the solution to study

the in-silico, in order to comprehend the polymerization process. It provides an av-

enue to observe the effect of perturbation on the cell as the time progresses. The

organelles present in cell exert forces on each other and also experience the external

forces. Thus time evolution of these cell organelles in the cell can be modeled and

after sufficient interval of time the effect on the cell can be seen. Here we propose

that a normal RBC can be subjected to cellular dynamics computationally with mu-

tated hemoglobin and its high potential to be associated with other hemoglobins as

constraint, so as to simulate the process of sickling. We provide an elementary frame-

work for such a model. Though such an exercise will be computationally expensive it

can provide a tool to study the dynamics related to disease in-silico. The features of
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Figure 1.2: Two depictions of the double strand of hemoglobin molecules found in
the crystal.

cells present in images are extracted using image-processing algorithm. On the other

hand, due to demanding increase in requirement of automated method for classifi-

cation, a decision support system for diagnosis of red blood cell named Cyto-diagno

is developed. This method will help in hassle free identification and classification of

altered cells from normal one using images obtained form any source. The extracted

features are further used to develop CAD models of sickle and red blood cell.

1.1 Review of existing work

The image processing is very popular all around the globe. It is widely used for diag-

nosis of different cell types. The primitive methods of diagnosis, evaluating clinical

status of cell types by counting and manually analyzing cells have been replaced by

automated methods. The reason behind this success is high-resolution images are

available with usage of fine quality microscopes [21, 40]. Quantitative image analysis

has been utilized before to study and classify red blood cells. Bacus and colleagues

had documented the application of various techniques in classifying the red blood cells

from patients with various disorders [1, 23, 24]. Contour models (snakes and balloons,



www.manaraa.com

Chapter 1. Introduction 5

which are initialized during the morphological operators) had been used for segmen-

tation of images [10]. Horiuchi et al. used image analysis for characterizing Wrights

stained sickle blood cell morphology [15]. In other study done by Wheeless et al. [44]

the metric form factor (4πArea/Perimeter)2 was selected as sole feature needed for

segregating cells into different classes. A classification approach using eigen images

is described in [39]. The description of cell free sickled hemoglobin structure was

explained in[6]. An effort to simulate the 2-dimensional model of polymer domains

in sickle hemoglobin has been done by[45].

Although, dynamics of sickling of cell in its various aspects is widely popular area

of research across the globe, several questions remain open, warranting further work

in this area. Similarly, past work done on application of image processing for feature

extraction and further classification lacks several assets covered by this work. One

main lacuna is problem of variable image quality is not addressed properly. Most of

the researchers have used the images generated by them or their collaborators. Here

we seek to address this issue and have worked towards an algorithm, which follows

crucial steps for proper cell segmentation and edge detection.

1.2 Objectives

Despite the availability of several types of classification, image processing approaches,

a automated method to differentiate the sickle and normal cells have not yet been

determined, necessitating the exploration of newer concepts and newer algorithms.

The in-silico simulation of dynamics of sickle shape formation will provide the new

insights into pathology related to this disorder. The main objectives of this work are:

• To develop robust feature extraction methods, in order to remove dependence

on manual operation for diagnosis.

• To provide an automated method, which detects the number of cells of a

particular morphological type.

• Algorithm for extraction of features and further use for classification in order

to study the dynamics of cell.

• To develop hierarchical model considering the morphological changes at different

levels.

• To develop cell models in order to describe morphologies of biological cells.
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• To carry out simple simulations of Cellular dynamics.

• To develop a framework to study sickling of RBCs.
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Chapter 2

Overview and Plan of Work

The work carried out here can be classified into three different modules (a) feature

extraction (b) classification (c) model building and (d) cellular dynamics. In order to

study the etiology of disease, it is required to differentiate cell on basis of morphology.

The variation in shape of normal and altered cells is comprehensive in majority of

cases. But the presence of abnormal cells leads to misconception, which ultimately

leads to wrong diagnosis. Due to this reason the extraction of features will provide

useful insight into diagnosis of disease. Fig. 2.1 shows the difference in morphology

of red blood cell, abnormal and sickle cell.

Figure 2.1: Sickle, Normal and Abnormal Red Blood Cells

Microscopic diagnosis is most efficient and reliable technique from past few years,

7
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but the major disadvantages are: resources spent in maintaining and training techni-

cians. On the other hand it is labour intensive and time consuming and accuracy of

diagnosis depends on skill, concern and experience of technicians [35]. Thus, in-silico

diagnosis will be far better than conventional methods which are labor-intensive along

with it requires manual evaluation and enumeration of sickle cells in blood. In this

way the automated, quantitative image analysis appears to offer sensitive and lenient

classification of cells. Further, using Machine-learning approach we can use these

features to classify cells into different types. In order to study the dynamics of this

disorder in broader prospective, simulation of sickling of cell will help in unrevealing

concealed phenomenon.

Figure 2.2: Overview of the work

An overview of the work showing the use of image processing, model building and

dynamics of cell is shown in the fig.(2.2). Important aspects in each panel are listed.

Image processing panel can provide precise definitions of various parameters from real

biological images, which can be used for further classification and model building of

cell.
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2.1 Feature Exraction

Much of the information on cellular structures at various levels of detail that we

have today has been obtained from different types of cellular imaging techniques.

The most prominent of these techniques being, electron microscopy and fluorescence

microscopy. Converting the qualitative data into quantitative type is required to

model the cell as well as to study the morphological details. Image processing and

computer vision techniques help to convert the qualitative information in cell images

into quantitative information using the features extracted and further can be used for

classification on basis of them.

2.2 Classification

The ’Cyto-diagno’ software is used for classification. The final classification of red

blood cells as sickled or not is basis for the classifier. The major dimensionality prob-

lem is that with the fixed sample size accuracy of classification decreases when we

increase the features present [11]. It implies that the more number of features will

reuire large training data set in order to give accurate and reliable results [5]. Cell

classification is very old concept that initially started with utilizing the quadratic

decision rule [34], minimum Bayes error [14], and scoring systems [41]. The classi-

fication problem is resolved by using Support vector machines (SVMs) classifier to

differentiate red blood cells.

2.3 Cellular Dynamics

Cell models can be utilized for several purposes and form the starting point for many

subsequent investigations. Studying the dynamics of cells, similar in concept to that

of molecular dynamics, is one such possibility that has been largely untapped as

yet. Availability of cellular models will enable exploring this area. As a case study,

simulating the conversion of a normal RBC to a sickled RBC has been attempted.

there are many challenges in this area, which have not been addressed thoroughly

in this project, given that they comprise separate research areas in themselves. For

example, there is no formal approach available to evaluate the consequence of the

change in shape of one organelle within the cell, let alone estimating the structural

or energetic feasibility of cell-cell interactions. However, attempts have been made
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to carry out preliminary work in this regard, which provides further directions to fill

the numerous gaps we have in this regard. One essential part and hurdle is the force

fields for substructure interactions. Novel force fields are needed to evaluate these

interactions.
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Chapter 3

Algorithmic Concept

3.1 Introduction

The automated image processing algorithm used by us is basically designed for clas-

sification of red blood cells in order to help pathologists to diagnose the differences

between normal and altered cells to detect diseases as soon as possible. In order to

achieve this aim, algorithm works on the entire available image format and converts

them to grayscale. It finds outs the edges of cells present and on the basis of features

extracted differentiates the data into normal and altered forms. The algorithm design

is type of classification problem and thus involves the pattern recognition and classi-

fication. It consists of mainly four stages: collection of images, image pre-processing,

feature generation and classification [41].

3.1.1 Microscopic Techniques and Cell Images

Transmission Electron Microscopy (TEM): The transmission electron mi-

croscope (TEM) operates on the same basic principles as the light microscope but

uses electrons instead of light. What can be seen with a light microscope is limited

by the wavelength of light. TEMs use electrons as light source and their much lower

wavelength makes it possible to get a resolution thousand times better than with a

light microscope. One can see the objects to the order of a few Angstrom units. For

example, one can study small details in the cell or different materials down to molec-

ular levels. The possibility for high magnifications has made the TEM, a valuable

tool in medical, biological and as well as in materials research. Fig.(3.1) shows the

blood cell. Here we see the cell substructures with the clarity required.

11
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Figure 3.1: An example of transmission electron microscopy; Blood cell

Fluorescence Microscopy: In fluorescence microscopy, the sample to be

studied is itself the light source. The technique is used to study specimens, which can

be made to fluoresce. The fluorescence microscopy is based on the phenomenon that

certain materials emit energy detectable as visible light when irradiated with the light

of a specific wavelength. The sample can either be fluorescing in its natural form like

chlorophyll and some minerals, or treated with fluorescing chemicals (see fig.(3.2).

Other microscopic techniques such as 3D EM [22, 29] and Laser Scanning Confocal

Microscopy (LSCM) are important considering the 3D reconstruction required for

modeling.

Algorithm 1 : Histogram Equalization Algorithm

Require: Image having G gray levels and of size N X M

Ensure: Histogram equalized image

H ← 0

for all pixels in the image do

H[gray value of pixel] = H[gray value of pixel] +1

end for

for p=1 to G-1 do

H[p] = H[p-1] + H[p]

end for

T[p] = round ((G-1) x H [p] / NM)
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Figure 3.2: An example of Fluorescence microscopic image; dermal fibroblast cell

rescan the image and write an output image with gray levels Q

3.2 Morphological operations

3.2.1 Erosion

Erosion is a morphological operation that shrinks or thins objects in a binary image.

The manner and extent of shrinking is controlled by a structuring element. Let us

consider an example. Consider the following matrix :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Let the structuring element be a vertical line, i.e. [1 1 1]’. The result of erosion is

shown below :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Erosion is a process of translating the structuring element throughout the domain

of the image and checking to see where it fits entirely within the foreground of the

image. The output image has a value of 1 at each location of the origin of the

structuring element such that the element overlaps only 1-valued pixels in the input

image(does not overlap any of the image background). Mathematically erosion of A

by B is defined in Equation.(3.1).

E(A, B) = Θ(−B) =
⋃

(A− β) β ∈ B (3.1)

3.3 Image Processing

Much of the information on cellular structures at various levels of detail that we have

today has been obtained from different types of cellular imaging techniques. The

world wide popular and most regularly used of these techniques being EM and flu-

orescence microscopy. It helps in converting the qualitative data into quantitative
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type that is required to study the complexity of cell. Image processing and com-

puter vision techniques help to convert the qualitative information in cell images into

quantitative information using the features extracted and use them in the design of

mathematical models as well as study of dynamics related to cell. Fig.(3.3 illustrates

the algorithmic steps followed for processing of images for extraction of features.

3.3.1 Collection of the Images

The images were collected form the internet. The images available in various formats

were processed, and further classified.

3.3.2 Pre-processing

Our main aim was to extract the features present in the image in order to use them

for classification. The images were processed in order to remove the noise and other

effects from the images. As the protocol used for extracting features stress on using

the gray scale images for processing, therefore we had converted other formats (RGB,

indexed) to gray scale. In general there are three types of images:

• Gray scale images

• RGB images (Jpg and Jpeg images)

• Indexed images (Gif images)

The protocol followed to convert the other format into gray scale is as follows:

Converting RGB to gray scale: To convert RGB image to grayscale image we

have used command “rgb2gray” present in image processing toolbox of MATLAB.

This converts RGB images to grayscale by eliminating the hue and saturation infor-

mation while retaining the luminance.

Converting Indexed to gray scale: For the conversion of indexed image we have

used command ind2gray present in same image processing toolbox of MATLAB. In-

dexed image contains indexed color scale. According to the color of image pixel

corresponding index value will be given to that location in image matrix. Using this

color map and indexed image matrix the function converts the image to an intensity

image and then removes the hue and saturation information from the input image
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Figure 3.3: Flowchart of algorithmic steps followed for image processing

while retaining the luminance.
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3.3.3 Feature generation

Edge Detection: The first and most vital step for generating features is detection

of edges. There are so many algorithms defined in literature [17, 16, 20, 27, 19] for

detecting edges of solid boundaries. But we have used Canny method for detection

of edges due to its appropriateness for our analysis. Edges in images are regions

with very high contrast in intensity of pixels; detection of edges reduces the amount

of data, filters useless information and preserves important structural details. This

method is multi-step procedure; it first finds edges by looking for local maxima of the

gradient of image. The gradient is calculated using the derivative of a Gaussian filter

which smoothes the image in order to reduce noise and unwanted details as well as

textures.

g(m, n) = Gσ(m, n) ∗ f(m, n) (3.2)

where

Gσ =
1√

2πσ2
exp−m2 + n2

2σ2
(3.3)

Now gradient g (m, n) is computed using gradient operators as follows:

M(m, n) =
√

g2
m(m, n) + g2

n(m, n) (3.4)

and

θ(m, n) = tan−1[gn(m, n)/gm(m, n)] (3.5)

Calculate the M as follows:

MT (m, n) =

{

M(m, n) ifM(m, n) > T

0 otherwise
(3.6)

where T is chosen that all edge elements are kept while most of noise is suppressed.

The non-maxima pixels are suppressed in edges in MT , obtained from the above to
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thin the ridges of the edge (as the edges might have been broadened before). In

order to do so, a test is performed to check whether the each non-zero MT (m, n) is

greater than its two neighbors along the gradient direction θ(m, n). If this is the case

MT (m, n) remains unchanged, otherwise is set to 0. Threshold the previous result

by two different thresholds τ1 and τ2 (where τ1 < τ2) to obtain two binary images T1

and T2 now link edges segments in T2 to form continuous edges. To do so, trace each

segment in T1 to its end and then search its neighbors in T1 to find any edge segment

in T1 to bridge the gap until reaching another edge segment in T2. The method uses

two thresholds, to detect strong and weak edges, and includes the weak edges in the

output only if they are connected to strong edges. This method is therefore less likely

than the others to be fooled by noise, and more likely to detect true weak edges. This

produces black and white image.

Filling cell with white: In order to obtain the area of cell the area inside

the edges should be filled. To perform this operation we have used an image filling

technique it assumes that white is “pixel on” and black is “pixel off”. Afterwards,

using 4-way connectivity check whether pixel is on or off, if the current pixel is on we

cross verify neighborhood pixel else we move to further step. While traversing if we

came back to visited pixel then these all pixels form a loop and area inside this loop

is called as hole.

Example:

bw1 =

0 1 0 0 1 0 0 0 0 1 1 0

1 0 1 0 1 0 1 0 1 1 0 1

1 0 0 1 0 1 0 1 0 0 1 0

0 1 0 0 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0 1 0 0

0 1 0 1 1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 1 0 1 0

1 0 0 1 0 0 0 0 0 0 0 1

Pixels (1,2),(2,1),(2,3),(3,1),(3,4),(4,2),(4,5),(5,3),(5,4) forms a loop. So, after filling

the hole inside the loop resultant matrix is

bw2 =
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0 1 0 0 1 0 0 0 0 1 1 0

1 1 1 0 1 0 1 0 1 1 1 1

1 1 1 1 0 1 0 1 0 0 1 0

0 1 1 1 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0 1 0 0

0 1 1 1 1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0 1 0 1 0

1 0 0 1 0 0 0 0 0 0 0 1

This way we can fill all loops.

Delete the edges that dont form loop: To perform this operation we have to

first understand how the edge formation takes place. If we take an edge for each on

pixel of the edge the neighbor row pixels or column pixels must be off. For example if

we consider above situation, each on pixel’s neighbor pixels either in row or in column

are off. so, we can use this property. After filling the image if we take mode as pixel

value for each three consecutive pixels the resultant value is off pixel.

Example:

If above matrix bw2 is our input then the output will be

bw3 =

0 1 0 0 0 0 0 0 0 1 1 0

1 1 1 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

At this point we have filled regions but some regions may come as a result of noise

present in the image. These regions will be very small comparing to cell regions so,

by finding area of each region and deleting smaller regions from image by applying

some threshold we can get proper cell regions.

Give labels to find area of cells region: Here for each region we give a

label. After giving labels to regions we calculate no of pixels belongs to each region
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this is considered as the area of the region. We will delete some regions that are hav-

ing lesser value than threshold value. Now in our images there may be overlapping

cells. To delete this we need an upper threshold value.

Figure 3.4: Image segmentation and Feature extraction with existing algorithm.

3.3.4 Improvement over the existing algorithm

• It is clearly seen in the images that the segmentation using newly developed

algorithm is more accurate.

• The sickle cell present in the original image is not segmented with existiing

algorithm whereas it is perfectly segmented using newly developed algorithm.

• With the existing algorithm we need to extract features of each cell present in the

image by finding its label manually. The newly developed algorithm uses minimum

threshold and maximum threshold to delete the noisy regions. For single scaled images

we can fix these threshold values. If the images are not single scaled then we have to

run the code twice or thrice for each image to fix threshold value for that image.

Finding cell region features: After all now we have proper cell regions with
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Figure 3.5: Processing of sickle cells using algorithm defined above: First after edge
detection, Second image is after filling, Third image shows filtered regions which forms
loops,Forth image which displays regions with clearly defined and Fifth image shows
edges without noise.

us. The extracted features used for differentiating the cells are given in the Table
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S.No Feature Explanation Use in Classification

1. Area Describes the actual number Sickle cells area will be much

of pixels in the region less than normal cell. This

variation provides us some

information in classification

2. Eccentricity Ratio of distance between the Eccentricity of sickle cell will

foci of the ellipse and have some higher value than

its major axis length normal cell

3. Euler Number Number of objects in This is same for sickle cell

region minus the number of and normal cell so, this

holes in those objects feature is not useful in this

case but is useful for some

other disease cells like

malaria

4. Major axis Length (in pixel) of major axis Since sickle cell grows in one

length of ellipse that has the same direction after sickling its

normalized second central major axis length will have

moments as the region higher value than normal cell

5. Orientation Angle between the

x-axis and major

axis of the ellipse

6. Equiv Diameter of a circle Sickle cells area is lesser than

diameter with the same area normal cells. so, diameter

as the region also small for sickle cells.

7. Solidity Proportion of pixels in Since sickle cells shape is

the convex hull that concave the convex hull that

are also in the region bounds sickle cell is larger

than normal.

8. Minor axis Length (in pixel) of minor Sickle cells minor axis will

length axis of ellipse that has have lesser value than normal

sane normalized second central cells minor axis.

moments as the region

Table 1.Features and their use in classification
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3.3.5 Construction of Classification Model

The features computed for the compounds in the training sets were in turn used to

construct the classification model using the support vector machines. The LIBSVM

was used to build the SVM classifier. The different kernel functions, that is, linear,

polynomial, sigmoid and gaussian, which were available as part of LIBSVM package

were examined in order to build the classification model. The linear kernel was found

to give a good performance.

Support Vector Machines

Support Vector Machines (SVMs) represent the learning technique that by following

principles from the Statistical learning theory [43], presents the high generalization

ability in several domains and robustness to high dimensional data [3]. This technique

looks for a hyper plane that separates the data from classes +1 and 1 with a maximal

margin, for a given dataset with the n samples (xi, yi). Each xi is an input sample

and yi ∈ −1, +1 corresponds to xis label. In equation 1, w is the normal vector to

the hyper plane and b is an offset.

w.x + b = 0 (3.7)

Margin maximization is the equivalent to minimize the norm of w, such that SVMs

solve the following optimization problem [23]:

Minimize:

‖w‖2 + C
∑

ξi (3.8)

Resrictions:

ξ ≥ 0 (3.9)

yi(w.xi + b) ≥ 1− ξi (3.10)

where C is a constant that imposes a trade-off between training error and general-

ization and the ξi are slack variables. These variables relax the restrictions imposed

on the optimization problem, and consequently allow some patterns to be within the

margins, which yields some training errors. The resulting decision frontier is given
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by the equation 3.11.

F (x) =
∑

xi∈SV

yiαixi.x = b (3.11)

where the constants αi are called Lagrange multipliers and are determined in the

optimization process. Here, SV corresponds to the set of support vectors, patterns

for which the associated Lagrange multipliers are larger than zero. These samples

are those closet to the optimal hyperplane. For all other patterns, the associated

Lagrange multipliers are null, so they do not contribute to the determination of the

final hypothesis. The classifier represented in equation 3.11 is still restricted by the

fact that it performs only a linear separation of data. Mapping the input samples

to high dimensional space, also named feature space, where they can be efficiently

separated by a linear SVM, can solve this. This mapping is performed with the use

of Kernel functions that allow the access to spaces of high dimensions without the

need of knowing the mapping function explicitly, which usually is very complex. The

Kernel Functions compute dot products between any pairs of patterns in the feature

space. Thus, the only modification necessary to deal with non-linearity is to substitute

any dot product among the patterns by Kernel product. The main advantage of the

SVMs is their precision, usually good even in high dimensional problems.

3.4 Results and Discussion

After getting features of all cells we have done classification of these cells using support

vector machine classifier. Considered cell features for this classification are :

• Area

• Eccentricity

• Major Axis Length

• Minor Axis Length

• Orientation

• Equiv Diameter

• Solidity

• Extent

Since any other feature that can classify normal and sickle cells is not available

the classification process is done using this set. Classification is done using features
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of 688 cells. In this 577 are normal and 111 are sickled.

Does this entire set is needed for good classification accuracy?

We can get answer to the above question by taking all possible combinations of eight

features and performing classification process.

No of possible combinations: 28 − 1 = 255

The classification is done for each combination. The data is classified using each

combination with 4 different kernels and using k-fold cross validation for k = 4, 8 and

12. So, totally the classification is done for 1536 times. Using the last five features

it gave 93% of accuracy for balanced data (111 class one type data and 111 class two

type data) and using all features except Area it gave 96% of accuracy for whole data

set. Here we have to consider one thing that a normal cell classified as sickle cell may

not be a big problem but a sickle cell shouldnt be classified as a normal cell. To avoid

this problem we should calculate the no of wrong classified cells and no of correct

classified cells. To do this Let we assume Normal cells are true and sickle cells are

false. Correct classification is positive and wrong classification is negative. It gave

the minimum no of false negatives when the linear kernel is used with features 1, 3,

7 and 8.

True Positives: 92

True Negatives: 109

False Positives: 19

False Negatives: 2

Accuracy: 90.54 %

Figure 3.6: Accuracy for different kernels on whole set of data
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Figure 3.7: Accuracy for different kernels on balanced data set

Figure 3.8: Accuracy for different kernels when False Negatives are minimum.
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Chapter 4

Design and development of in-silico

model to study dynamics of Red

Blood Cell

4.1 Introduction to basic cell modeling

Cell Modeling is one of the emerging and challenging areas to model biological pro-

cesses and indeed entire organisms, areas that are currently being integrated under

the banner of Systems Biology. Given that modeling of biological systems is a highly

complex task, it is important to start with relatively simpler definitions of A ’system’.

A biological cell is a natural fairly self-contained unit, depicting the fundamental unit

of living tissue. In order to model various aspects of a cell it is required to integrate

knowledge encoded at different levels of abstraction, with cell morphologies at one

end to atomic structures at the other. While a number of studies have illustrated

the design, development and application of metabolic and structural models of the

individual proteins and also the proteome, there has not been much work reported

in the literature about modeling cell morphologies, visualizing dynamics of processes

and ultimately relate them to molecular level knowledge. As a first step, methods

have been developed in this work to systematically capture data about various mor-

phological features in a cell available through a number of sophisticated cell imaging

techniques. This helps in capturing the morphological properties of certain cell type

or different types of cell, which ultimately leads to extraction of features morpho-

logically. The dynamics of cell can be further understood by simulating the process

27
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in-silico. This study will help in apprehension of peculiarities of cellular dynamics.

4.1.1 Introduction to Sickle cell Anemia

Sickle cell disease is a blood condition seen most commonly in people of African

ancestry and in the tribal peoples of India. It is an inherited blood disorder charac-

terized primarily by chronic anemia and periodic episodes of pain. It is caused by the

hemoglobin variant Hb S. In this variant, the hydrophobic amino acid valine takes

the place of hydrophilic glutamic acid at the sixth amino acid position of the normal

hemoglobin polypeptide chain. This substitution creates a hydrophobic spot on the

outside of the protein structure that sticks to the hydrophobic region of an adjacent

hemoglobin molecule’s beta chain. This clumping together (polymerization) of Hb S

molecules into rigid fibers causes the ”sickling” of red blood cells[30].

4.2 Creating 2D cell model

4.2.1 Membrane coordinates extraction and Processing

This process started with image processing to get morphological features of general

cells. From that 2D surface coordinates obtained. One model cell was taken, which

built by a system biology research group(http://gcrg.ucsd.edu/organisms/rbc.html)

and processed it to get surface coordinates. But this won’t give the coordinates along

the surface curve sequentially. Instead of traversing along the surface curve it just

gives the pixel values of surface in the following manner. Suppose our coordinates

along the surface curve is as shown in the (fig.(4.1)). In the above image (fig.(4.1)),

Figure 4.1: Cross-section of Red blood cell

we suppose to get first left top curve coordinates next middle and then right top

curve. But from image processing we get first left top next right top then middle one.
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The points to be arranged so that these all are consecutive on the curve. One point

is taken(Let it be A) on the curve initially and found the point closest to it (Let it

be B). Next the process started with B and found closest point to it. Like that all

points on the curve arranged sequentially.

4.2.2 Positioning polymer in membrane

Actually the process should start the simulation with Hemoglobin monomers and

polymerize them. The entire simulation should give us a polymer in membrane that

is having contacts with cell membrane on both sides to supply forces to membrane.

Because it is known that the cytoplasm inside cell is almost all liquid so, it can’t

supply forces from polymer to membrane. Instead it makes space to polymer by

self-adjusting it self. So,the polymer should be in membrane like the figure shown

below (see fig.(4.2)). But since getting it is tricky job and the main intension is to do

Figure 4.2: 2-dimensional model of Red blood cell with polymer inside

simulation to get sickle cell from normal cell so,polymer inside membrane manually

is taken. This is done by taking 4 points on membrane and generating other points

on polymer. Initially this polymer looks like a rectangle but when it bends it gets

curve shape.
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4.2.3 Polymer elongation

Here some assumptions are made:

Since the polymer is fit inside membrane its length can’t be increased in its axis

direction. So, It is assumed that there should be some kind of heterogeneous poly-

merization with other small polymers or monomers of hemoglobin at polymer and

membrane contact points. This can happen on either sides of the polymer. It is

taken on upper side of the polymer both sides.

Now let us assume that polymer has enough stiffness so that it won’t bent by force

of membrane on it. Then even the polymer elongates its elongation takes place in its

axis direction then we can’t get sickle shaped cell.

4.2.4 Polymer bending and shape change

This gives us some basic understanding that even if it applies force on membrane and

causes change in its shape; polymer also should bend to some extent. So, what shape

will it get when bent.

Let us suppose assume that the force on both ends is equal and opposite in direction.

We know that polymers cross-section mean radius 110A is very much lesser than the

polymers length 10(micro meters approx). Here we are applying forces from both

sides and equally. The resultant shape can be seen in the Fig.(4.3)). In the above

Figure 4.3: Normal and Buckled column

image take starting point as x =0 and ending point as x = L and vertical axis as
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y-axis. The force applying from right side. Let the force is applied for unit time

and then the condition is maintained then the force traverses along the column and

it happens that from the middle point of the column equal distances will have equal

forces on it.

This condition is same as half of the force is applied from either side of the column.

We can find the critical load(Force) and the deflected shape of the buckled column

using following equation.

EIv′′ = −M (4.1)

in which v is the lateral deflection in the y direction.E is modulus of elasticity,I is 2nd

moment of inertia and M is bending moment [31].

Since

M = −Pv (4.2)

EIv′′ + Pv = 0 (4.3)

The solution gives v as a function of x. Let

k2 =
P

EI
(4.4)

then

v′′ + k2 ∗ v = 0 (4.5)

The general solution of this equation is

v = C1 ∗ sinkx + C2 ∗ coskx (4.6)
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By applying boundary conditions

v(0) = 0 (4.7)

and (4.8)

v(L) = 0 (4.9)

it gives

kL = nπ (4.10)

where n = 1,2,3,...

then

P =
n2π2EI

L2
(4.11)

So, the deflected curve equation is

v = C1sin
nπx

L
(4.12)

4.2.5 Force on membrane and membrane shape change

Now the elongated polymer applies force on membrane. This force will be applied at

contact points. The amount of force applied at each point can be calculated using

the equation (4.13).

F = k ∗ x (4.13)

Here k is stiffness of the membrane or polymer and x is displacement. After getting

the actual value of k for red blood cell membrane and polymer we can replace it.

Initially each contact point should move till the end of polymer. Now keeping the

extended points as constant the other points are moved on the membrane.

Here is one example (see fig.(4.4)), which explains about this movement. Let A, B,

C are three consecutive points on membrane. Suppose the force is applied in BA

direction. Then in BA direction we have two forces stiffness of the membrane and

force of the polymer. In BC direction we have only force of stiffness of membrane.

The addition of these two vectors will give the resultant force direction i.e. BA + BC
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Figure 4.4: Consecutive points of 2-dimensional space to illustrate vector summation

is the resultant force direction.

Suppose A, B, C, D, E, F, G, H, I are consecutive points on membrane and we applied

force on point E. movement in E forces the other points to move in the direction of

E. Now suppose angle between EFG is some theta degrees. If we apply force on E

by fixing G at the same place then point F moves towards the line joining EG. If

the extreme force is applied then these three points become on the same line. After

that whatever the force applied on that portion will result in elongation of membrane

till the membrane can bear shear force applied, extra force application will lead to

bursting of membrane. Using this fact point F is moved on to the line joining EG

keeping G fixed and E moved already by the polymer. The point F remains its

distance ratio with E and G. After finishing this FGH, GHI, EDC, DCB and CBA

were selected respectively and moved the middle point on to the line joining the

extreme points.

Here it has been checked whether the entire membrane length is out of range. If so,

then the it informs about it and exits from running code. As a further step it has

been checked whether any pair of points violated their distance range, If so, then that

points were readjusted to its max or min distance according to its violation type.

All the time the polymer will be inside the cell. So, to keep the polymer inside

the cell the x axis is divided into small intervals and checked in each interval if

there is a polymer and membrane intersection if so, then the present point is noted

down and searching process continued for the other intersection point of the polymer
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and membrane and given 75% moment to the membrane and 25% moment to the

polymer opposite to their crossing so that both polymer and membrane join between

the crossing points.Actually this membrane and polymer adjustment depends on their

stiffness which we don’t have now.

4.2.6 Results

The above entire process undergoes one iteration. By performing more iterations

(approx. 600) the shape of membrane changes to sickled shaped cell (see fig.(4.5)).

In further iterations it got stretched and at one point shear force leads to bursting of

membrane.

Figure 4.5: Polymer stretching after simulation, normal, stretched and deformed.

4.3 Creating 3D model of cell

4.3.1 Creating Grid based model

What is Grid based model?

It is a model build using 3D points of the membrane. Keeping the whole cell in a

cuboid, The cuboid is divided into a mesh of small cubes with edge length 1. The

vertices of cuboid are:

A(-400,-130,-400) , B(-400,-130,400), C(-400,130,-400), D (-400,130,400), E (400,-

130,-400), F (400,-130,400), G (400,130,-400), H (400,130,400).
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After making setup the traversal started from vertex A to vertex H. This traversal is

done to setup membrane inside the cube by defining each cube value of grid as

• 1 if the cube is inside the membrane.

• 2 if the cube is outside the membrane.

• 0 if the cube is on the membrane.

Then how to find out which point is where. For this it is taken care when the

points for membrane were generated. For each pair of consecutive points the max

coordinate distance between them is 1. For example if (x, y, z) is a point on the

membrane then the next point on the membrane can have maximum (x +1,y + 1,

z + 1). i.e. If we take a pair of consecutive points then in any direction they wont

have distance more than 1.

Now since the taken membrane is symmetric to XZ plane and for each side its

like a single valued function for y i.e. y = f (x, z) is single valued on each side of the

plane So, when the traversal goes through the grid-keeping x and z coordinates fixed

and y varying. It will touch the membrane at most twice and there will not be any

loopholes.

Advantages of This setup:

• We can generate hemoglobin monomer points inside the membrane with out

putting much effort. i.e. just check whether the box value is one or not if it is 1 then

generate point inside the cube.

• Assuming all monomers are having Brownian motion we can easily check

whether a hemoglobin monomer is inside or outside of the membrane after its mo-

ment to next step. Accordingly we can set its position.

• Polymerization process can be carried out inside the membrane easily.

Disadvantages of this setup:
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• Extra memory space required. Even after using 3D char datatype array to

represent the grid. It took 177 MB extra space. which is more considerable amount.

• Handling membrane deformation is difficult.

The actual red blood cell contains approximately 270 millions of hemoglobin

monomers. But generating this many hemoglobins takes much memory space. In

the present system, in which simulation process is being done is not capable to gen-

erate and maintain these many points.

The 1 million points was generated inside the membrane and taken into consideration

for simulation initially. In this simulation, first we considered that each monomer is

behaving as a polymer and then some of the monomers get polymerized. These poly-

mers get elongated when some other hemoglobin monomers or polymers joined with

them. If the process will go on like this then at one stage if the number of polymers

are less than the specified threshold number of polymers then polymerization will halt.

Polymerization process has initially carried out in 2-D with out considering membrane[29].

4.3.2 Polymerization process inside cell model

The steps involved in this process are

• Each hemoglobin monomer will have Brownian motion i.e. in each time unit it

moves one step in random direction.

• A threshold is specified on membrane and monomer distance to maintain all

monomers inside the membrane. Whenever a monomer takes movement it is checked

whether the monomer is inside or not. If it is going outside of membrane then it goes

the specific threshold distance closer to the membrane and stops there.

• Once two monomers get polymerized then from that step they move together in

the same direction and same step size unless these polymer goes outside of membrane.

• At each time unit the closeness of two monomers will be observed and if it is much

closer than the threshold distance then these two will be moved back on the line

joining them.

Optimizations in code :

• We need to calculate distance between each pair. This will be an O(n2) job. But

here all points are sorted on x coordinates of points and distance is calculated only
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for all the monomers who’s x coordinate distance itself with in threshold distance for

polymerization.

• For sorting purpose heap sort is used. which is best if we have millions of

points.Since the simulation is still in progress results were not given here.
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Chapter 5

Conclusion and Future Directions

5.1 Conclusion

Use of automated methods in disease analysis got great importance today due to

reduction in human dependency.Sickle cell anemia is one disease that caused by change

in cell morphologies. In this present work a semi-automated method is developed to

analyse the morphology of a Red Blood Cell, whether it is diseased or not.We have

used image processing techniques to acquire cell features automatically.Ultimately

classification method SVM(Support Vector Machines) is used to classify and find

the existence of the disease in terms of number of Sickle cells present in the blood

sample. As a further step in this work the surface coordinates, which found using

image processing techniques has been processed and used to build a simple model cell

in 2D and 3D. Using this model an attemp is made to carry out simple simulations

of cellular dynamics. The simulations mainly focused on polymerization process of

hemoglobins and sickling of RBCs.

5.2 Future Directions

The present work can be further improved to detect other diseases, which caused by

change in cell morphologies. The sickling of RBCs is done in 2D this can be extended

further to 3D and can add more properties of polymer and cell membrane. A robust

cell model should be developed to carry out simulations of cellular dynamics. An

attempt is made to develop and use a mechanical model it is given in next subsection.

38
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5.2.1 Creating CAD and FEA models

The use of mechanical engineering CAD/FEA software to develop mechanical models

of cells has been attempted here,though no FEA simulations have been performed.

The CAD/FEA models should aid the understanding of the behaviour of these cells

in the long term. However, it must be emphasized that benchmark studies and the

use of appropriate elements and non-linear solution techniques are essential. CAD

models can be used in conjunction with SVM to reconstruct from images, especially

since we have used 2D models so far. Developing 3D models and constructing images

from these can have distinct advantages in behaviour simulation. In this thesis, an

attempt has been made to create a CAD and FEA model of the red blood cell to

study the feasibility of using widely available FEA software like ANSYS.

5.2.2 Creating ANSYS model

Creating a fem model needs the points in a particular format. The points are called

as nodes and group of nodes (3 to 24) forms elements. In FEM (Finite Element

Method) the deformation will be calculated on each element. To create ANSYS

model we should provide all commands starting with nodes first then elements and

then material property commands and so on. Here is the example file with needed

commands and description.

/PREP7: This command is used to start creating the new model.

As we already seen that FEM model contains Elements. These elements are of

different types. One of such element is SHELL63. The following is the description of

SHELL63.

SHELL63

The geometry, node locations, and the coordinate system for this element are good

enough to build our model. The element is defined by four nodes, four thickness each

applied at one node. Since thickness of rbc varies this gives flexibility in assigning

various thickness values. The thickness is assumed to vary smoothly over the area

of the element. Moreover since the membrane is also having elasticity property we

need an element which maintains elasticity property and with SHELL63 we can do
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it. Other properties like stiffness of membrane and bending energy an important

property in building a proper model, we can achieve this also. The element coordi-

nate system orientation is as described in Coordinate Systems. Since polymer and

membrane have different properties we can create two models each having their own

properties.

Commands:

ET, 1,SHELL63

ET, 2,SHELL63

The above command means the element which ones reference no 1 or 2 is SHELL63

type element. The SHELL63 has the required properties so; I have used this shell for

my modeling purpose.

N, num, x coord, y coord, z coord: This command defines a node with number “num”

and with coordinates xcoord, ycoord and zcoord. Here after whenever we refer to this

point we can refer it using this “num”.

Presently we have only 2D model to get 3D model for this modeling purpose I Rotated

each point around Y- axis and got the 3D coordinates. Pattern to specify elements:

E, I, J, K, L, M, N, O, P.

Here the first character E refers to the command for an element. I,J etc. refers to

nodes which forms this element.

Defining Material properties: To define material properties we have command MP.

Example: MP, EX, 1,1E9

In the above the young’s modulus of material whose reference no 1 is 1E9. EX denotes

command for young’s modulus. MP, PRXY, PRXY denotes command for poison’s

ratio.

Defining Membrane variable thickness at various nodes To do this we have RTHICK

command usage:

RTHICK, Par, ILOC, JLOC, KLOC, LLOC Par is the Array parameter that ex-

presses the function to be mapped for example; func (17) should be the desire shell

thickness at node 17. Here ILOC, JLOC etc. are Positions in real constant set for

thickness at node I or J of the element.

Defining stress of membrane:
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ISTRESS Sx, Sy, Sz, Sxy, Syz, Sxz, MAT1, MAT2, MAT3, MAT4, MAT5, MAT6

Sx, Sy etc. are initial stress values. MAT1, MAT2 etc. are materials to which the

initial stress should apply. If these Materials are not specified then the stresses apply

to all materials.

Defining Bending stiffness:

SSPD, D1, D2, D3

This command specifies a pre integrated bending stiffness for shell sections. D1, D2

etc. are bending stiffness components.

Figure 5.1: Model of RBC in 3-dimensional space
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Figure 5.2: FEM based ANSYS model of Red blood cell in front and side view.
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